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ABSTRACT

A combined experimental and analytical study of impulse genera-

tion in aluminum has beer. carried out using intense electron beams

as the source of high energy density loading. Both analytical models

and hydrodynamic codes were used in the modeling of the observed

material response. In additicn this report presents a detailed

survey of current calculational techniques and an extensive dis-

cussion of the experimental methods required for this work. For

the electron beam fluence range employed here, giving peak doses

less than 2000 cal/g, a model of liquid spall was found to represent

the data well. This model was simplified to an analytical expres-

sion which depenids exponentially on deposition time and is suitable

for predicting melt-dominated impulse in a wide range of materials.

In addition, hydrodynamic code calculations have been carried out

and comparisons are made with measured transmitted stress histories

and liquid ejecta velocities.
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FOREWORD

This report presents the results oC a 15-month program, begun

January 23, 1969, and completed April 22, 1970. The program was
supported by DASA Contract 01-69-C-0065 and monitored by Captain

Allen A. Weston. Our purposes were to investigate an important

material-response phenomenon, namely the generation of impulse in

test materials under well-diagnosed loading conditions using elec-

tron beams, and to develop appropriate models for impulse genera-

tion in a wide range of materials.

The work was conducted by members of Physics International

company's Intense Beams and Applications Group within the Nuclear

Radiation Effects Department, under the supervision of Dr. Alan

Klein. Principal investigators were Dr. Gerold Yonas, Program

Manager, and Messrs. Andrew Lutze and John Reaugh, Program Physi-

cists.

The authors acknowledge the important contributions of Dr.

Phillip Spence and Mr. Sergei Heurlin in the characterization of

the electron beam environment and the work of Mr. James Call, the

technician who gave substance to many of our ideas.
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SECTION I

INTRODUCTION

For several years intense electron beams have be. suggested

as a suitable laboratory tool for investigating the high energy densit '

response of materials. Recent developments in beam handling and

diagnostic techniques, along with improvements in laboratory

methods of diagnosing material response, have permitted workers

in this field to collect data that can be of oreat value in deter-

mining material properties and in evaluating the hydrodynamic

codes or analytical methods that use these material parameters.

The essence of this technique is to use a well-characterized

electron deposition profile with a sufficiently large area of

irradi&tion that one dimensional stress-wave propagation can be

assured in the solid material and one-dimensional flow in any

material ejected from the front surface. In addition, one is

interested in achieving high enough energy densities such that

material phase changes can occur. To accomplish this, one must

work with relatively high-current electron beams using low-

impedance pulsers. With the advent of low-impedance transmission

lines and diode structures between 1965 and 1967, it became possible

to generate the required beams. Beam physics research has been

continuing since that time and beam control and diagnostic methods

have been constantly evolving (References 1-3). In addition,

pulsers capable of generating increasingly higher currents have

been developed and the present state of development should be viewed

as an intermediate one (Reference 4).

The goal of this work was to investigate the response of a

relatively simple material to high energy density loading in order

to provide a firm empirical basis for analytical modeling. The

state of development of the electron beams at the time of this work



w d Lh hat peak doses less than 2000 cal/g could be achieved

ci, r -Areas of 3 cm' usinq the Physics International 738 Pulserad.

Su,:h a beam was therefore used to study the process of impulse

generation resulting from blow-off and the material chosen was

aluminum. Aluminum itself was used as a sample material for

several reasons: (1) it is a relatively easy-to-obtain, inexpen-

sive, representative metal, (2) it has no major solid-solid phase

transitions, nor is it particularly rate sensitive, so that the

calculation of stress wave propagation is straightforward. The

results, however, are thought to apply to all homogeneous materials

that undergo a solid-liquid transition in the energy-density range

of interest.

Since the completion of the experimental portion of the program,

further techniqucs have been developed using the 738 Pulserad, which

allow one to achieve doses up to 6000 to 7000 cal/g uniformly over

areas -f roughly 0.5 cm2 (References 5 and 6) and it is expected

that the extension of the work discussed here to this higher dose

range, will be relatively straightforward,

This report, then, presents an in-depth approach to one of the

fundamental problems characteristic of impulse generation; namely,

that dominated by removal of material in a liquid phase. In ad-

dition, the report presents a rather general discussion of the

analytical and hydrodynamic computer code modeling of impulse

generation over the full rangy of phenom nology from solid spall

to full vaporization. Finally, suggestions are presented as to

how this method can be extended to cover the entire scope of

impulse-generation effects.
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SECTION II

ANALYSIS OF IMPULSE GENERATION

A. INTRODUCTION

This report is concerned with the generation of a net impulse

in a material by sudden deposition of energy through the use of a

high-intensity electron beam. The process of energy deposition by
electrons slowing down in a material in itself imparts essentially

no momentum. (At the nominal electron beam parameters used in the

experiments, 50 cal/cm2 of 0.25 MeV electrons, the total beam

momentum is less then 0.01% of the typically measured values.)

Since momentum is conserved in the motion of deformable bodies,

the imparting of a net impulse requires ejecting material from the

front (irradiated) surface. The content of this report is essen-

tially a study of the way in. which material is ejected.

Before presenting a detailed discussion of calculational

techniques for predicting impulse, it will be useful to give a

qualitative picture of the processes involved in removing material

from a suddenly heated region. As a benchmark for this discussion,

we will consider the case where no net impulse is generated--a solid

that stays solid.

Suppose a finite region inside a material is heated instan-

taneously. There is then a sudden localized temperature rise,

T - T . Since tne material is compressible, it takes time to expand

to the relaxed volume V0 (1 + 3a(T - T )) where a is the linear

coefficient of thermal expansion. The material is effectively

As used throughout this report, impulse is defined as momentum
per unit area.

3



Omprv, ;ed by a thermal strain in the amount 3a(T - T ). This,

t.n c uses a stress P = K(3 0 (T - T0), where K is the bulk modulus.

It u it, the specific deposited energy, the formula

P=K (Rt) ey
S= C eV y

v

holds, where Cv is the specific heat and y is the Gruncisen ratio.

If we assume that the material is elastic and that conditions of

one-dimensional strain hold, the stress pulse will separate into

two elastic waves moving in opposite directions with half the

original amplitude. If the heated region starts at a free surface,

one (compressive) wave moves into the cold material. The wave

moving initially toward the heated surface is reflected with op-

posite sign and moves into the solid. In this way, then, a

suaidenly heated region near the front surface generates a compres-

sive and tensile stress pulse moving into the material. A point

inside the material will feel fitst the compressive (direct) part,

then the tensile (reflected) part. In this way there is no net

impulse:

J P dt = 0

0

As was stated earlier, in order to generate a net impulse by

sudden heating, material must be ejected at the front (irradiated)

surface. Ehis ejection is basically one of two types--the motion

of spalled or vaporized material away from the solid. Much of the

difficulty with describing impulse generation quantitatively is

associated with the fact that the two types of ejection are not

perature rise.

r 4



epall, the low-temperature phenomenon, is simply tensile

failure. The (reflected) tensile stress wave exceeds the cohesive

strength. If this occurs at only one depth in the material, all

the material moving away from the solid remainder is ejected; if

it occurs over a region, that region solid is pulverized. For the

case at hand, the spalled material has a uniform velocity away from

the solid, since that is the direction of material motion in the

reflected wave. The fact of spall implies that the stress wave in

the remaining solid will no longer be symmetric--the tensile part

will no longer exceed the cohesive strength--and a net impulse is

generated.

On the other hand, very large temperature rises will produce

vaporization. The vapor state, unlike the solid, has the property

that it is never in tension. The fact that it is never tensile,

however, implies that there is also no restoring force once it

begins to expand. As a consequence, the vapor moves away from the

solid, and the stress pulse in the solid is a compressive pulse

that decays slowly as the pressure of the vapor on the solid sur-

face decays.

Neither of the above pictures of behavior, which may be

considered a mechanical description, are totally accurate. This

is seen to be the case, particularly when one considers a phase

diagram drawn from considerations of equilibrium thermodynamics.

The paths to be considered on the equation-of-state surface are

the initial pressure (and temperature) rise at constant volume,

and the adiabatic release paths.

In Figure 1, in particular, two release adiabats are shown

on such a phase diagram. The heavy line represents the path

taken by the spall model, used in this case to describe liquids.



Liquid Spall Model
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ITriple Line

Solid-Vapor

Volume

FIGURE 1. SCHEM4ATIC LOADING PATH AND RELEASE ADIABATS
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hie solid-liquid phase transition is ignored, and the liquid is

assumed to release to just below zero pressure, the liquid cohesive

slrength, followed by spalling of the liquid so that zero pressure

is maintained. The actual path taken is probably more like the

dashed line. The liquid release adiabat is followed down to some

positive pressure, the metastable limit. It then jumps back to

some equilibrium vapor pressure, and further expansion occurs in-

side the liquid-vapor dome. ThL liquid spall model, however, is

found to describe the behavior of liquid spall quite well. This

can only be the case when the equilibrium vapor pressure is quite

small with respect to the initial pressures, so that ignoring the

vapor pressure affects the solution very little. For solid spall,

of course, the equilibrium vapor pressure is less than the triple

line pressure (for materials that exhibit a liquid state it is

less than 1 atm) so that the pressure can be considered zero.

Vapor expansion adiabats, too, will cross into the liquid-

vapor coexistence region (Reference 7). If the initial deposited

energy density is high enough, however, it will occur at sufficiently

low pressures so as not to materially affect the impulse generated.

There are several methods of calculating the impulse generated

by rapid energy deposition in a slab of material at ambient con-

ditions. These methods may be grouped into two categories, that

use respectively, "analytical expressions" and "hydro-codes." The

analytical expressions require the evaluation of a one-dimensional

integral, which is the total impulse. The hydro-codes are of a

family of computer programs evolved from programs, developed at

the University of California's Lawrence Radiation Laboratory, that

require an equation-of-state of the form P(V,E). These programs are

used to calculate the detailed motion (typically in one dimension)

of the expanding material. The total impulse is then the asymptotic

value of this momentum at long time intervals.

7



B. ANALYTICAL EXPRESSIONS

Two expressions are in use that give impulse as an integral.

They are the Whitener formula and the BBAY formula. In their most

general form, they are given in Equations (1) and (2), respectively.

i /2 flEi(m)-- Ef(m)] dm (1)

I = 1.2 12 f m Ei (m) - Ef(m)I dm (2)

1. Derivation of the Expressions

a. Whitener Formula

The Whitener formula may be derived from consideration of

an incremental mass inside the expanding material. By con-

sidering the final state energy to be partitioned into the kinetic

energy of the hydrodynamic motion, and the final state internal

energy density,

Am (V2) + Ef Am = Ei Am (3)

where E i is the initial energy density. Obtaining the expression

for momentum, by assuming unidirectional velocity, and summing the

contributions gives

I f f V dm = /E- ) dm (4)

8



b. BBAY Formula

The BBAY formula (Reference 8) is a closed form solution to

the one-dimensional equations of motion and conservation. The

hydrodynamic equations are

ax V

a - U
at

au _
It 

-

ac - D(a,t) - p a (5)

where D(a,t) is the heating rate, x is the Eulerian (space) co-
xordinate, X is the Lagrange (material) coordinate, o(\)-10  o(X')dx'

is the axeal density from front surface, V is volume, U is material

(particle) velocity, and e is the internal energy density. The

fourth expression contains the hydrodynamic assumption of small

distortional energy and no viscosity.

It is assumed that the deposition occurs at a constant rate,

and that the final internal energy is subtracted out, so that

D(a;t) = {max CEi(a) - Ef(W)03/po()tl, 0 ! t < t 1
0 tl1 <t

where Ei(a) is the total energy per unit volume to be deposited at

The quantity -v has the properft t1a

Eia) E f(a)V

9



Deftning a new dependent variable Z by

z = o x(o',t))cl'

the expressions of Equation (5) become

X =Z'

V =Z1

U =Z

P = -Z

= D(ayt) + Z Z'' (6)

If the equation of state of the vapor is given by

E pV/(y-l)

the y-law gas assumption,

= ( V + 0)/(Y-1)

Thus the . equation -1! (6) becomes

D(a't) + Z Z" = Z- z Z" - Z Z"]/(y-l),

or

Z Z" + yZ Z" = - (y-l) D (o,t)

Assuming that Z is separable,

Z(a,t) = Y(o) f(t) , and

[f f + yf f]YY" = - (y-l) D(a;t)

10



Since D is a function of a only,

r. , 0 < t < t1
f + Y = 0, tI < t (7)

and

Y Y" = - (y-l) D(c,t)/P s = - (y-l)max [E i(o) - Ef(O),0]/(I'sPo (O)t1 ) (8)

where rs is the separation constant.

Equation (7) is solved by f = tm  0 t < t1, which becomes

t2m- 3 [zr(m-l)(m-2) + ym2 (m-l)] = rs  implying

2m - 3 = 0 so m = 3 = 3

For t Z tl,-(y-l) d (fY f) = 0, or

fyf = const = 3/2Y 3 (1)t -1/2 3 (3y-l)/2
=1  2 1  t1

Thus ort> nd usngt13/2

Thus for t > tI1 and using f(tI) t1  , one obtains the solution

[3tl 3t1 (3y-l)/2 f-(y-1)h
= tT12 ['2y-llT

where

-3 + y-i~T 4r
25 s

Equation (8) becomes

Y y1, 3 - G)t max El (a) - (a) 0 F

3p(<~~ 2 0~j

[: i i



with the boundary conditions

P(Ot) = -Y(O)f(t) = 0

U( ) = YI ( v)f(t) = 0

That is, the left bounrary is a free surface, and the solid-vapor

interface is (nearly) fixed.

The impulse is defined as

IB = f0 P(v't)dt

= 4fZdt

= Z(av,0) - i(av, 1)

= [f(0) - ( (Jv)

Since

f ()Y(a) = Z(Oa) = Uo',O)da' and since

U(c,O) = 0 and f(O)Y(G) 7- 0 implying Y(o) 9d 0,

(0) = 0.

Since the analytical form of f is a monotonically increasing

function, (without boundary)

f co = 3 t1

Thus =3t !

-Y(a)B v

12



Defining

F(a) p max [E (O) - (a) 03PO (a) t 1 12

Equation (8) with U(G v) 0 B.C. implying Y' (o v )  0 becomes

Y'(G) = - y- do'

and P(0,t) = 0 B.C. implying Y(0) = 0 gives

(a do" do I
f [ f v  (0)

0 a

For a >a one can interchange the order of integration, since the
V

integral is not a function of a"

Y(a) = 'F('() do' (9)

Equation (9) can be solved numerically by an iteration technique,

but the standard BBAY equation states that the average value of Y

over the interval 0 to av is given by Y(av )/a. Thus substituting

the average for Y('),
a

[Y(O)] 2  a 2 jo a'F(a')da'

and /3t s--
IB : e V2-- 3 do' o max [Ei(a')-Ef('),0,i

or simplifying

[ [ () Ei(') - Ef(o' ) do (10)

0

it is then shown that for reasonable forms of Ei 10 1 2;

hence a is chosen to be 1.2.

13



The form of the BBAY formula (although not the coefficient)

m jy bL derived by considering a snowplow model. At a point a

disLancv x into the expanded material, which corresponds to m mass

units, the velocity of Lhe Am mass is lower than in the Whitener

form, since it pushes on the mass ahead of it. Thus the kinetic
2energy is mY = (Ei - Ef)Am, and the square of the momentum

contribution at a point is

2
(mv) = 2m(E i - Ef)AM

Thus the total impulse squared is

2 x

I2 = 2m (Ei -Ef) dm
-0

and the impulse is just

I = (21 m(E - Ef)Idm

which, except for the coefficient a is the BBAY formula.

2. Use of Analytical Expressions

Both the Whitener and BBAY formulas contain an adjustable

parameter Ef(x) that corresponds to the internal energy of the

final state. There are, in general, two ways in which this may

be obtained.

a. Final Energy as Polynomial of Deposited Energy

The first way, which has had some success, is to plot experi-

mental impulse data and a family of lines of calculated impulse

with Ef the parameter. This produces a plot such as shown in Figure 2.

14



P- calculated
EimpulseS E(2)

>1 + data

5.4

ro , (3)

• -I E(1) < E(2)<

++

0H/

H

0 1 2 3
Fluence (Arbitrary Units)

FIGURE 2. TYPICAL CALCULATED IMPULSE WITH Ef PARAMETER
AND IMPULSE DATA

Using such data, one car, obtain a least-squares fit to the

final energy density as a function of the initial (deposited) energy

density, assuming a polynomial form. For each data point, the depth of

material removal is measured (or estimated by the temperature at

which the tensile strength goes to zero). Assuming that this is

constant, or taking an average value, one has the minimum final

energy E0. Then for each data point, one has

12 = x(E*) (x) - E*)dx jx(Eo) ( - Ef](E.(x))dx

where E* is the apparent final energy, obtained by interpolating
impulse between lines of constant E,,. Rearranging,

x(E )  2 x(E

2 xE-(x)dx - E[ 2 f xEf (Ei (x)) dx
x (E*)

For the kth data point, call the left-hand side (LHS) -Dk.

15



Assuming mEE (I
Ef = j E r

j=1

where
a E

0 0

and defining for the kth data point

J x[E ( x ) ] n dx , n = 0, m
nk f

i.e., m+l quantities m

PRS = - j j jk

i=0

Using the standard definition of a least-squares fit, the system

of m equations (m < N, the number of data points) for the a. is

(Mij)(cj) = (si) , ij = jm,

where the elements of column vector are ( ° = E0 , aok = 0.5 x2 (E ))

N

ai = a (Dk -E o Jok) Jik'

k=1

and the elements of the symmetric m by m matrix Mij are

N

S ij= Jik Jjk
k- 1

16



Thus the solution, (symbolically), is given by

cj = (Mij 8i)

This solution, of course, does not require that the data

points have the same deposition profile, so that data from widely

varying sources may be used together, provided only that E* and

x(E*) can be obtained, For this least-squares fit to be useful

over large ranges of energy, large amounts of reliable data or

considerable faith in extrapolation is required, for the value

of impulse is certainly related to the value of Ef.

b. Freezing (McCT) Model for Final Energy

The alternative method for obtaining Ef, and the way required

when data are lacking or uncertain, is to construct a model. for

the final state of the partially condensed gas, and derive a

functional form for Ef (Ei). The most successful of the models

has been the McCloskey-Thompson model. This model is discussed

in some detail below.

It is known (Reference 7) that at some point in the isentropic

expansion of gas, the composition freezes. The distance between

the condensing droplets becomes large, requiriag a longer interval

to reach thermodynamic equilibrium. When this time interval

becomes long with respect to the time asso.iated with hydrodynamic

motion, condensation stops, and the composition remains fixed.

17



F

The McCloskey-Thompson (McCT) model assumes that the composition

stays fixed at the intersection of the isentrope with the triple line.

This, of course, is a useful assumption, since pressure and tempera-

ture are constant on the triple line as the specific volume changes.

Their derivation then proceeds as follows:

Consider a solid heated instantaneously. The initial enerq

and entropy are given by

E. = E£ (VoTt) + Cv£ (T -T)
z t vt i t

Si Sz (V0,TT) + C vt nTt

for Cv  a constant. Denoting E and S0 as the constant (base)

energy and entropy, and evaluating them at the normal melting

temperature (which is, in general, near the triple temperature)

one can solve for S. (Ei) by eliminating Ti  in Equation (11)

and obtain
ll E.-E

S. S +Cv £n + i o (12)

If the final state is on the triple line,

Sf= xS + (l-x)S 0
(13)

E f= xE0 + (l-x)E •

18



Eliminating x, the liquid fraction, and solving for the final

entropy,

S -S= S+V°_E j (El - EoSf S +.E
Vo. 0

since

AS AS =1

EZ-g 
0H To

that is, the change in enthalpy for a constant pressure phase

transition is nearly the change in internal energy, the final

entropy is given by

Sf = SO + -(Ef - Eo )

0

Equating the initial and final entropies for the isentropic

expansion,

= + T 0 n C +viT 0)0

Approximating C.2 T0 to E0 , the final form is given by

Ef =E + n )] (14)

The maximum initial energy for which this formula is valid is

given by

I SEm=v \
E E I I1+ knvo 0~ E

or

19



Ei maxZ = EO exp VO E E (15)

and the minimum energy Eo.

c. Non-Freezing Model for Final Energy

One may reinterpret the McCT model and remove the essentially

arbitrary choice of freezing the composition at the triple tem-

perature and pressure. For materials that are in a liquid state

at ambient pressure, the pressure of the triple point is less than

atmospheric--water, for example, and a triple point pressure of

5 Torr. Most impulse experiments are performed at 1 atm or less.

It is improbable that impulse measurements made at 1 atm or less

will change with ambient pressure. Thus we may replace the

assumption that the composition freezes by the assumption that

the material expands to ambient pressure, which is taken to be

the triple point pressure.

Since material vapors generally follow the ideal, gas law at

pressures less than 1 atm, one can easily calculate the final

entropy and internal energy.

For E. > E.1 i max

Ef = Evo + Cvg (Tf - T0 ) (16a)

Sf = Svo +(Cvg-no+R n() (16b)

where by applying the assumption

RT f
f 0 f

Considering that most of the impulse is generated in 1 psec or so,
1 bar-usec corresponds to 1 tap.
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Setting Evo - C T E and solving Equation (16a) for Vfvo vg o sub

R(Ef - Esub)

V f = C Pvg o

Then Equati-n (16b) becomes

S = S + Cvg Rn E f sub + R 9n Ef Esub (17)fv g I C vg To0 1 C vg To0

Equating Equations (17) and (12), replacing Cv£ T with E0  and

Cvg To with Evo - Esub

fE f E sub = v n vo S 0

E vo -Es-- o-- (Eo R

or E ( R

= ASE E 4. (Evo E-sb)(O exp -
f sub sb Pi

where

8 = .2i+ 1R

If one makes the additional replacements that Esub L,

AS = L/T0 , where L is the change in enthalpy between liquid and

vapor at the melt temperature,

Ef = L + (Evo - L) I ) exp (18)
f vo e/(- 6 'T)

By construction, Equation (18) has the property that Ef (for

Tf = To so L = 0 and E E) = vo, so that it joins smoothly
with Equation (15).
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Since for Ei > Bi maxQI Ef is an increasing function, the use

of a constanL value as suggested in the McCT reference will give

results that predict a larger impulse at high initial energy

densities.

C. HYDRODYNAMIC CODES

The analytical expressions discussed in this section do not

deal with the shape of the stress wave propagated into the remain-

ing solid material. If this stress wave shape is required, one

must solve the hydrodynamic equati.cns of motion and conservation.

in addition, as was seen in the BBAY derivation, a relation between

pressure, volume, and internal energy--an equation of state--is

required. In these codes, then, it is the equation of state that

determines the impulse and pressure history, so that a study of

impulse calculation with hydro-codes is a study of the various

equations of state.

1. One-Phase Equations-of-State

In a restricted range of initial energy densities, one-phase

equations have been used successfully in predicting the impulse

and, in fact, the transmitted stress profile obtaincA by quartz

gauge measurements (Reference 9). For maximum internal

energy densities such that the vapor pressure is less than a few

bars, equations of state generated from Hugoniot (shock compression)

data with two modifications are used. First, for elestic-plastic

codes, the yield stress goes to zero as internal energy approaches

the enthalpy of a melting solid. Second, and more important, the

tensile shrength goes to zero as the energy approaches the melt

enthalpy. If this tensile strength is e:.ceeded at a point, the

pressure iL set to zero there, and the material is presumed to have

spalled at that point. In this way a net momentum is imparted to
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the solid material; the transmitted stress profile is nearly all

compressive.

If appreciable vapor is formed, however, impulse calculations

with a one-phase equation of state result in predictions of impulse

lower than that measured. It is apparent, then, that for higher

energy densities, a description of the vapor phase is important.

2. Two-Phase Equations of State

Two-phase equations of state in current use include the

Tillotson equation (Reference 10), its modification (Reference ii)

and the PUFF equation (Referenre 12). These have the following in

common: (1) there is a line in internal energy-volume space that

separates the two equations of state (these lines are compared in

Figure 3), and (2) the two equations-of-state forms are usually

continuous at the boundary and have continuous first derivatives.

The equations are given in Table I.

The PUFF and modified Tillotson equations have, among other

parameters, one called E s . The standard Tillotson equation uses

E = 0. At large expansions, (n small) the dominant term of both

equations is of the form with P equal to a constant (E-E s), the

y-law gas form. Thus to fit experimental data would, in general,

require the use of Es as an adjustable constant, as was the case

in the BBAY and Witener expressions. The PUFF and modified

Tillotson equations give reasonably similar results for impulse

when the same value of E5 is used. This is, of course, in agree-

ment with the results of the BBAY derivation, which showed that

impulse was independent of the value of y in the y-law gas

equation of state. They are also both in reasonable agreement

with the BBAY calculations using a constant E s
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TABLE I

TWO-PHASE EQUATIONS OF STATE

Name Solid Vapor Expression

PUFF x Cl.+Dp2 +Sp3 +GrE

x n[ H+ (G-H) nk {E-EsE l-exp [GE n

TILLOTSON x [a+b (E- -2I+ -1 En+Ap+Bp 2

x aEn+[ bEn ( - A+)+ 1 -i exp 1i exp

[(, -1)2]

MODIFIlED [ 4 1 \ 2
TILLOTSON x La+b + l Eni + AVi + Bp

x a(E-Es ) + G exp R,

G = aEs + ET1+(Al1+Bi. 2 )exp(OR),
2

R (E 1(
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1f the solid is heated so that the entropy is greater than

the critical point entropy, the distinction between phases becomes

quite arbitrary; properties change continuously between the "phases."

Thus a two-phase equation of state makes good physical sense for

this high energy density regime since pressirc changes smoothly

along an isentrope. If a choice were necessary among the three

equations offered, the modified Tillotson equation would be best,

as the solid Gruneisen coefficient, r, varies from the ambient

value of approximately 2.0 to the asymptotic Thomas-Fermi gas value

of 0.5 as the internal energy increases. Wh3ther the form chosen

for interpolation at reference density 0.5 + (F - 0.5)/(E/E + 1)

is correct is not relevant. The equation is incorrect where the

interpolation form is important.

The inaccuracy of the two-phase equations is greatest where

the mixed-phase (liquid-vapor) region is important. The calculation

of pressure in this region is difficult, particularly if there is a

requirement for thermodynamic conzistency and agreement with the

limited equation of state data that is available.

Another equation of state with a temperature-dependent Gruneisen
was used in Reference 14 to fit Hugoniot data on porous media at
pressures up to several megabars. It does have the slight dis-
advantage of being implicit in energy (temperature is the dependent
variable).
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D. MONK CODES

MONK codes (Reference 13) generate a two-phase equation of

state by an approach that differs from other two-phase equations.

Instead of selecting equation-of-state forms that join smoothly, the

MONK code uses separate forms for each phase and joins them by

equilibrium thermodynamics.

The vapor equation is one suggested in Reference 16 as being

useful for moderately high pressures (hundreds of kilobars) and at

near liquid densities. It is a virial expansion of the form

R 1T 1i +" B(T) + C + D +E I

where B(T) is the second virial coefficient of Lennard-Jones (6-12)

potential and C, D, and E are constants. The coefficients are

given as dimensionless ratios of the co-volume. The temperature

and volume scaling parameters are related to the two constants in

the 6-12 potential, which are the depth of the potential well and

the radius of the minimum potential. They may in turn be estimated

from the critical point temperature and volume.

The solid form is separated into two parts corresponding to

nuclear and electronic contributions. The latter, of course, are

only dominant at high temperatures. The nuclear form uses the

compressibility and its pressure derivative, the coefficient of

thermal expansion, and the spccific heat at constant volume to

obtain the nuclear contributions to pressure and internal energy

as functions of temperature and volume, This solid form is assumed

to hold throughout the solid and liquid phases.
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It is desired, then, to make a transition between the forms at

high mass densities and temperatures and to make it thermodynamically

consistent. For phase changes at constant volume and temperature,

the thermodynamic potential is the Helmholtz free energy. Since

the expression for the Helmholtz free energy, F = E - TS, can be

written for both phases, equating F and Fs defines a line Tsub(V).

For the MONK code, then, the transition between the two phases is

a line in the T - V plane, but a region in the E - V plane. In

this region, the pressure is calculated by a simultaneous solution

of the three equations

ng Eg + (1 - ng) E. = E

ni - ng ) V = Vng Vgg

P (Tsu b (V), V) = P (T (V), V) = P

As with the other two-phase equations, the formulation is

only appropriate for high energy densities, where the release

adiabats remain in the vapor phase.

For adiabats that intersect the mixed phase region (see

Figure 4), however, it is necessary to construct the boundary

of that region.
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E. MIXED-PHASE REGIONS

1. Construction of the Mixed-Phase Boundaries

The boundaries of the mixed-phase region (liquid-vapor) may be

established by the following arguments.

For any N-component mixture we may write the change in Gibbs

free energy, G, as

N

dG 3G' dP + G' r dT + a dn . + (19)P ' iA P' i " . /P, Ttnj~~

now

a anIiG IT nP

the chemical potential, and for equilibzium between two phases of

the same element at constant total mass, N = 2, pl = p 2 dnl = -di2'

so that Equation (19) reduces to dG = VdP - SdT. However, along

a line where T is equal to a constant in the mixed-phase region,

P is constant, so dG = 0.

Thus, at temperature TI , we know that Gsolid %T!, V11 )

=Ggas (TI, V2) (the subscripts refer to Figure 5). The gas and

solid energies may be placed on the same scale by assuming that

l, Pb' and T. are known at a boiling point. Then since

All = AE + a(PV), and for standard boiling point data, P is constant,

AHb AE b + Pb W.
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V is found from the expression Pg (Tb , V = Pb; Vs is found
similarly.

If E can be represented functionally as E (T,V) + E °

AHb= Eg(Tb, Vg) + EO - Es (Tb, Vs ) + Pb (V - VS )
or

E O -- AH - Eg (Tb, Vg) + Es (Tb, Vs ) - Pb (V - V s ).

The gas and solid entropies are placed on the same scale by the

equality of Gibbs free energy at the boiling point.

G - F + PV B E - TS + PV

again write the gas entropy as S (T, V) + So.

E(Tb, V o-Tb( (TbV
Eg b Vg) + - [Sg b Vg) + S ° ] + Pb Vg =

Es (Tb, Vs) -Tb Ss (Tb' Vs)] + Pb Vs
S0

AE + Pb AV + Tb Ss (Tb, Vs) - Tb Sg (Tb , Vg) =T b S

AH b
sO= -b + Ss (Tb' Vs) - Sg (Tb, VQ)

With the energy and entropy scales correct, the dome may be

constructed by solving two implicit equations for selected Vg

P5s (T,V S) =P 9(T, V)

g g

Gs (T, Vs ) = G (T, Vg)5s (T Vs  g (T g)

for V expressed in the two unknowns T and Vs

The convergence of the iteration may be speeded by using the Clapyron
equation dP/dT = AH/TAV to estimate the temperature T.
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2. C iculation oc Pressures

Scveral diffficulties can be foreseen in the calculation of

pressure; they are described below.

a. Mixed-Phase Region

Clearly ther: are two possible states near the condensed

vapor line. Consider the following two experiments for ambiguity.

For the first experiment, put the solid material in a rigid

container with a piston at one end, not attached to the material.

Heat the material to less than the 1 atm melting point, and then

expand the volime at constant temperature. At some volume, the

piston will no lcnger touch the solid, and the pressure on the

piston is just the saturation pressure (or vapor pressure) at

that temperature. This then describes a material under the liquid-

vapor dome.

The second experiment, however has a piston that is rigidly

attached to the face of the material. As the piston is "expanded,"
the material will go into tension until it spalls. Then the pres-

sure increases rapidly to the proper point in the liquid-vapor

dome, and expansion continues as in the first experiment.

With these two experiments in mind, then, the "mixed-phaze"

logic in a hydro-code becomes: if the material was condensed,

compute pressure as solid (P s). If Ps is less than the spall

strength (at temperature T), compute as mixed phase. If the

material was a gas, or if one surface of the zone is free, compute

as mixed phase.
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b. Gas-Phase Region (V > Vcrit, T > Tdome (V))

In this region there is no difficulty, provided the negative

B coefficient (the viral coefficient) does not dominate the pres-

sure equation at the input volume. One determines thdt the sub-

stance is a gas by the condition

E in Eg Tdome (Vin ), Vin

and computes the pressure by solving the implicit equation
E (T, V in) = E.n for the temperature. The pressure, P, is given

by P = P (T, Vin).

c. High-Density Region (V < V critT > Tdome M)

One problem in this region is the description of the "transi-

tion" from a solid to a high-density gas. Both this problem, and

one other--that there is no guarantee that the liquid-vapor dome

will close at a critical point--can be traced to the parameters in

the solid equation of state.

If the liquid-vapor dome closes, certainly the intersection

of the solid and gas lines is a place where the Helmholtz free

energies are equal, and continuity arguments would say that the

line of equal Helmholtz free anergies, the Tsub line, can be drawn

from Vcrit, at least part way to Vo. Extrapolating this line,

making sure that E > Es would give a reasonable transition line.

Remember, however, that pressures computed near this artificial

transition line may not be accurate.

If the dome does not close, there is no assurance that the

Tsub line can be drawn at all. There are two ways in which non-

closure may occur. The first, in which there is a coexistence

region extending to high temperatures, is shown in Figure 5.
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FIGURE 5 TWO-PHASE DIAGRAM FOR SUBSTANCE WITH
NO CRITICAL TEMPERATURE OR VOLUME

Figure 5 may well represent the condition of equilibrium

between a solid and its vapor--thcre may be no critical point.
This is certainly reasonable behavior, and may be pictured
crudely as a combination of the vapor pressure increasing

rapidly with temperature, and the stiffening of a material at

high pressures beginning to overcome the softening associated
with high temperatures.

The second way in which nonclosure occurs, however, is
the case where there is no temperature at which the Gibbs free

energies equal, shown in Figure 6.

Condensed Solid Condensed Material
or Liquid and Gas Mixture

"Stuff"

e i

v0 1/

0 V.0 1/V
Volume

FIGURE 6, TWO-PHASE DIAGRAM FOR SUBSTANCE WITH CRITICAL
TEMPERATURE BUT NO CRITICAL VOLUME
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The second case (shown in Figure 6) is more difficult to

interpret physically, but the implication is that since the two

phases may not coexist above a certain temperature, there must

be a third (separate) phase there. Since it is assumed at the

outset that there are but two phases, it is clear that the

difficulty is with the separate equations of state.

In the first case, there is no real problem in calculating

pressure. There is no transition between solid and vapor phases

in the high-density region, only the mixed phase. In the second

case, a Tsu b line is sought starting at the maximum solid volume

by the standard MONK procedure. If there is no solution, a
temperature on the V line where E 9 E is used. From that points g s
an extrapolation is made on a T sub line at constant temperature

(if possible) keeping E > E s

d. Alternative Methods

Certainly one alternative to the methods outlined above would

be tc use a solid equation-of-state form that guarantees the
proper behavior at the critical point. This was the method taken

in Reference 15. The difficulty with (and simplicity of) this

method is that there are no adjustable parameters that can be used

to accommodate shock wave data. It would seem, then, that this

approach is not fruitful for use in a hydro-code.

e. Consistency Check

After the boundary of the dome has been calculated, one severe

test of consistency is that the critical volume and temperature

are related to the co-volume, B0 , and temperature E/k:
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/k 0.77 ' t

B = 0.75 Vcrit

which are initially estimated to scale the gas equation of state.

If these are very different from the values used previously, the

dome should be redrawn, using revised values of the co-volume and

characteristic temperature.

Major areas of doubtful values of pressure using this forinu-

lation would be near the transition line, Tsub' and near the
CritLcal point, particularly if the liquid-vapor dome does not close

with zero slope. It should, however, do well with condensation and

boiling phenomena for P < Pcrit' and for release adiabats with

P > Pcrit at V = Vcrit.

f. Approximate Version

An approximation to the above description can be made as

follows. Inside the liquid-vapor dome, the two relations that

follow hold rigorously.

S(/Eg - E s ) + Es = E

(20)

n (Vg - VS ) + Vs = V

Figure 7 shows the reduced vapor pressure as a function of

reduced temperature. This is, for aluminum, using the critical

constants Tc = 6842 0 K, PC 4.7 kbar, and the vapor pressuAre form
of Reidel (Reference 15),

Pv = exp {aZn t C[36/t - 35 - t6 + 42 £n t31
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In further analysis, this will be given by the power law

P = t6 .85 (21)

which holds reasonably well down to 10 bar (the line in Figure 7),

Assuming the gas to be ideal, the condition

E - E
T- g 0 (22)3/2 R

holds, where E is the internal energy of the gas at zero tempera-

ture and may be calculated by a known boiling point at, for example,

1 atm.

The condition

RT/V
P (t) (23)

c

serves to determine the gas volume at the "dew point." If we

assume further that

T = E s/3R (24)

i.e., small volume changes in the solid, T Z 2e, we may make the

further approximation that

fg = . _ -V+ Vg V [ +( V) + "" Vg (25)

Then solving Ea. on for an n9w ti

E-E
_ s(26)ng E -E

g s
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Conditions of Equations (22) and (24) give

(B -Eo )
Es 3R -_ - 2 (E -E

Defining U E- EO , Es = 2U, Equation (26) becomes

r) E-2U _ E-2U (27)
U+Eo-2U E-u

0 0

Using Equations (21) and (23) and solving for V/Vg,

P P p (t) 6 . 8 5
V _ c_ v_ c

V RT RT
g

Substituting Equation (22) for T, and defining Uc - 3/2 RTc

V = c 3/2 R V U )6

P 3 VU (28)
c 2

Substituting Equation (28) into (25) and equating to (27)

U)6.85 3 V _ E-2U
UP (T U Eo-U

which on rearranging becomes

-\.5 2 u (E-2U) (29)Uo - E -- v -U)
Let the value of U which satisfies (29) be U*. Then in the mixed
phase region
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U* (EV)T = 3- 7 R

1 p 31 U* .85
Vg ic 2 U uO~) = * I, HS Equation (29)

1T _ S LHS Equation (29).
P 1- =VH qato 2)

g

To relate this to a hydro-code calculation, let the solid

pressure be the standard polynomial, Ps, and determine the approxi-

mate mixed-phase region by Ps (EV) < PV (E/3 RT c ) and if V/Vg < 1

then use the mixed-phase logic.

It should be noted that the approximations restrict the range

of validity to T < T crit, so that, for aluminum Einc 'S 1500 cal/g.

F. CONCLUSIONS

With these calculational techn.i ques, one can predict impulse
in materials over a wide range of deposited energies. For high
doses, so that the impulse is vapor dominated, th_ two-phase
equations of state in hydro-codes and the BBAY expression are
reasonably effective. For low doses, the spall-domiated region,
the BBAY formula is inappropriate. It will be shown ill Section III
that the Whitener formula with an appropriate model for E is
effective in predicting impulse when proper account is made of the

deposition time. In addition, one-phase equations of state predict

impulse and the transmitted stress pulse.

Equations of state in current use were found not to account
for the effects of vapor-licquid equilibria. A modification and
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extension of the existing McCloskey-Thompson model of vapor-liquid

equilibrium effects used in BBAY integral expressions was presented.

Finally; a technique for generating a thermodynamically consistent

model for vapor-liquid equilibrid was derived, and a simplified

version suitable for direct use in hydrodynamic codes was shown.

To select the appropriate models for predicting impulse, one

needs a basis of empirical information, and the experimenLs des-

cribed in the following sections were performed at Physics Inter-

national on the 738 Pulserad to provide such data. Since accurate

electron energy deposition profiles are required for all of tie

models, diagnosis of the electron energy spectrum, current, and

mean angle of incidence are necessary for the electron transport

(Monte Carlo) codes used to calculate the deposition profile.

Section III presents the diagnostic techniques used for obtaining

this information, as well as the techniques for measuring impulse.
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SECTION III

EXPERIMENTAL TECHNIQUES

A. INTRODUCTION

The first phase of the experimental portion of this program

consisted of: (1) demonstrating a system of electron-beam diag-

nostics to determine time-dependent energy deposition in the

test material as a function of depth, and (2) demonstratino a

reliable technique to measure electron-beam-generated impulse.

The methods used to accomplish these two goals are discussed in

this section. The beam diagnostics include diode voltage and

current monitors to define the electron beam at injection into

the drift chamber, as well as Rogowski coils and a Faraday cup

to measure the net and primary beam currents at the sample loca-

tion. For beam intensities sufficiently low to precluee material

spallation or vaporization, graphite calorimeters and thin foil-

aluminum dosimeters were used to measure electron-beam intensity

anJ in-depth energy deposition.

The ability to determine energy deposition as a function of

material depth utilizing voltage and current monitor outputs in

conjunction with mean angles of incidence of beam electrons was

independently verified by the following comparisons:

1. Calculated energy deposition with that measured in thin-

foil dosimeters.

2. Measured electron number transmission with that derived

from calculated deposition profiles.

3. Measure rear-surface pressure in a material with a well-

known equation of state with that from calculated energy

deposition and beam intensity.

Preceding Page Blank
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'lt' ,l[ic ;'iih m*, iti_-trumiented with Rogowski coils were

rnp~uy,.d to t,-,vItorL Actron be-ums. The geometry of the

quilQ, was c,,lnd to shape the beam intensity so that the

t1u'.,t , 2va/ ) is uniform over the guide-cone exit area

(approximate,,1 3.0 cm2). The RZogowski-coil instrumentation

provides a me.isurement of the net current of the beam, which

can be empirically related to the primary current. This re-

lationsnip has been used to predict beam intensity (fluence)

within ±10%.

A ballistic pendulum was used to measure electron-beam-

generated impulse in test materials. The important features

of the pendulum were a variable transformer recording the

time history of the pendulum deflection and a low damping co-

efficient of oscillation. The guide cone and pendulum system

are mounted on an inertial platform used to decouple the

measuring apparatus from "bulkhead shock" caused by the shock

generated in the oil switch between the transmission line and

the diode. The beam guides have been slotted to minimize the

effects of anode debris on pendulum motion.

B. DIAGNOSTIC TECHNIQUES

Electron-beam parameters are monitored in two regions:

the diode and the drift chamber. Diode diagnostics provide

a time history of electron accelerating voltage and current

at the anode plane. This information is required to determine

the characteristics of beam production in the diode.

Following injection of the beam into the drift chamber,

the characteristics of beam transport to the sample location

can alter the energy spectrum generated in the diode. Addi-
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tional diagnostics in the drift chamber are, therefore, required

Lo specify the electron-beam environment at tLe sample location.

Strong evidence indicates that the voltaqe waveform is not signi-

ficantly altered for beam transport lengths up to 30 cm. However,

the primary current-pulse shape can undergo substantial change

caused by losses of electrons with high transverse energy com-

ponents as well as by the "erosion" of the beam front (Reference 3).

What follows is a description of the monitors in the diode

and drift chamber regions, including their calibration and function

to determine electron--beam characteristics.

3.. Diode Diagnostics

The Physics International 738 Pulserad was used to generate

the high energy density states required in this program. The

pulser consists of a 38-stage Marx generator, used to pulse-charge

an 8.5-ohm, oil-filled coaxial transmission line. The trans-

mission line is switched into the load, a field emission diode

consisting of a 2 -in. diam, 600-needle cathode, and a thin,

0.00025-in.-thick, aluminized Mylar anode. Diode impedance is

variable between - 1 and ; 8 ohms by adjustment of the anode-to-

cathode spacing, such that at typical pulse charge voltages of

3.5 mV, the machine output can be varied in the 200 keV to 1 MeV

mean electron energy range at current levels of 250 to 125 kA,

respectively.

The diode diagnostics consist of a resistive voltage divider

attached to the cathode, a self-integrating loop current monitor,

and an open loop dI/dt monitor. These three monitors are situated

in the diode (Figure 8). Their construction is described in

Reference 2.
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FIGURE 8. ANODE-CATHODE REGION AND PLACEMENT OF DIAGNOSTICS
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These monitors were calibrated as follows:

1. The diode current monitor was calibrated by firing the

beam into a Faraday cup located at the anodv plane at

both high (200 kA) and low (50kA) current levels. The
diode voltage monitor was calibrated at 25 kV with an

external voltage source.

2. The inductive pickup of the voltage monitor (Figure 9c)
was measured for anode-cathode shorted shots and cor-

related with the signal from the dI/dt probe located in

the diode region, The dI/dt probe was then used as a

measure of the inductive component of the diode voltage

signal on all subsequent shots. This component was sub-
tracted from the voltage monitor signal (Figure 9d) to

yield the actual accelerating voltage pulse shape

(Figure 9e).

3. A series of shots was fired into total shopping graphite

calorimeters near the anode. The total beam calories

deposited in the calorimeter agreed (±5%) with f VI dt
0

calculated from diode voltage and current records.

2. Beam Transport

The beam Jln the drift chamber is controlled by metallic guide

cones (Figure 10). These cones produce an extremely flat fluence

distribution over the 3/4-in. exit diameter (at drift chamber

pressures in the range 0.5 to 6.75 Torr) as confirmed by uniform
depth cratering in aluminum, and X-ray pinhole photography of the
bremsstrahlung produced in a tantalum target at the cone exit.

The pinhole photographs in Figure 11 show uniform density spots
corresponding to the area at the cone exit. The elliptical shape
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of the spots results from pozitioning the pinhole camera 30

degrees off-axis from the center line of the cone. Figure 12

shows the top and side view of an electron-beam-caused crater

in an aluminum slab. The uniform crater depth confirms a

uniform fluence distribution over the exit area of the cone.

The level of the uniform fluence distribution (at fluence

levels low enough tL preclude removal of graphite by the beam)

is determined by allowing the beam to impinge on a totally

absorbing (5/16-in. thick) segmented calorimeter array placed

at the cone exit. The energy stopped in those blocks which

are well within the projection of the exit area of the cnne

onto the calorimeter array (Figure 13) is divided by the frontal

area of the blocks ( x -cm 2) to yield the fluence level (cal/cm )

The fluence level indicated by blocks near the circumference

of the cone exit area projection is underestimated for two rea-

sons. These blocks are not irradiated over their entire area

(fluence calculations average incident calories over entire front

surface of the block) and also they lie on the slope of a severe

temperature gradient from the hotter blocks in the center to the

cold3r blocks near the edge of the calorimeter array. The heat

transfer is demonstrated by fluences recorded in blocks that were

not irradiated (see Figure 13, Calorimeter Array). Consequently,

the fluence map obtained from the calorimeter array is a poor

indication of fluence uniformity.

Figure 13 shows a radial fluence distribution obtained from

calorimetry incorporating a correction for irrdiaon- cF eonIy

portions of blocks along the cone circumference projection.
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3. Drift Chamber DLagnostics

The beam guide cones are instrumented with two Rogowski

coils, each of which is a loosely wound torus. The Rogowski

coil is self-integra-i ng and has a voltage output proportional

to the average flux threading all its turns. This diagnostic

measures tne net current flowing through the guide cone. A

completed coil is shown in Figure i4. Neglecting any mutual

inductance between the separate turns of the Rogowski coil,

the output voltage is

V = 1 nA P lRa (mks)L 0

where R = resistance of integrating resistor,

L = net self-inductance of the coil,

n = number of turns in coil,

A = area of a single turn,

a = mean radius of the torus.

In view of the approximations involved in determining vhe

Rogowski coil output, an empirical calibration was necessary.

A calibration fixture and fast readout system have been developed

from the following:

1. Fast risetime pulse generator, 10 A into 50-ohm load

with a 2-nsec risetime.

2. Sampling oscilloscope, 2 mV/cm sensitivity, 0.3-nsec

risetime.

3. Impedance matching load threading the coil.

A typical calibration trace on the sampling oscilloscope is

shown in Figure 15a, where the upper trace is the coil output, and
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the lowtr is the input current pulse. Figure 15b shows the coil

response to a longer (270 nsec) 10-A input pulse. A summary of

the characteristics for coil 15 is given below.

COIL CHARACTERISTICS

2 cm i.d. Rogowski Coil Number 15

Risetime 0.9 nsec

Absolute Sensitivity 4,8 V/kA

Decay Constant 40 nsec

The aim of the inclusion of Rogowski coils in the beam guide

cones was the prediction of fluence levels when a sample completely

covers the cone exit area thus making fluence data collection imn

possible. A Faraday cup is used to achieve this predictive capa-

bility jFigure 16). The Faraday cup is a charge collector combined

with an integral mill.ohm shunting resistor and incorporates a fast

vacuum pumping system and a conical collector specifically designed

to intercept high-current, low-energy electron beams. A thin rub-

ber membrane acts as a vacuum seal in front of the collector, and

in principle, prevents the plasma formed in the beasn channel from

shorting out the current path through the monitoring resistor.

Typical output signals of the Rogowski coil and the Faraday cup

are shown in Figure 17.

With Il, I2, and Imax defined in Figure 17, the following
p

empirical relation between the primary and net current for a fixed

I - drift chamber pressure (e.g., X = 2.0 at 0.5 Torr) has been ob-

served:

I maz: = I1 + k I
p 1 2
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Thf, rms Ieviation in the prediction of the primary current peak

-irnphLude i, tf> (! Wiqurtu 124)

Since a Faraday cup trace of the primary current is not

available during a sample irradiation shot, the time dependence

of the primary current was approximated by

t t I o sin &- (t a')

where 70 082 Imaxp

c = full width 86 nsec

a' = lag time compared with V(t = 0) = 5 nsec

The accelerating voltage, V(t), from the voltage monitor trace

was approximated by a trapezoid:

V(t) = V1 t for 0 :z t : a 12 nsec
a

(V2 - V ) t - (aV - bV1 )
V(t )  = 2 ( 2ora 0 t <b = 50 nsec" b -'2

V2 (c - t)
V(t) = (c-b) for b t c = 86 nsec

where V1 and V2 are defined in Figure 19:

V~ttv (t) \\ 1V v2 P

FIGURE 19. VOLTAGE MONITOR TRACE PARAMEFRS
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Using the approxima:ions for V(t) and I p(t) as defined

abov,!, let

3C(cal) 4.186] V(t)I p(t)dt = 1o (kA) (3.12 V1 (kV) + 7.34 (kV)]x i0 -

represent the total beam calories near the cone exit. The uniform

fluence near tLhe cone exit now permits division by the cone exit

cross-sectional area giving an approximate fluence level

2(cal/cm2 ) Z - (kA) [1.09 V1(kV) + 2.55 V2(kV)] x 10
-

where 10 0.82 1m a x = 0.82 (I1 + 2.0 12), with

k = 2.0 at 0.5 Torr

A = 2.85 cm2

dependu only on parameters from the net current (Rogowski
coil output) and the accelerating voltage (diode voltage monitor

output). This information is available on any shot, including

sample irradiation.

The results of a series of fluence shots into segmented

graphite calorimeters were used to test the accuracy of the total

beam calories prediction, 3C. The rms deviation from the measured

total beam calories, 3C, in the range of 60 to 170 cal was ±10%

(Figure 20). A further comparison consisted of measuring the

primary beam current with a Faraday cup at the guide cone exit.

The waveforms of the voltage and prima:y current were then used

in an exact integration of fV(t)Il(t)dt to obtain the total beam

calories which were compared with 3C calculated from approximations

to those waveforms. These data are also presented in Figure 20.
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Tihe wean electron energy is defined as

f V(t) I(tldt

< i> -- (t)dt

and 3C f- V(t)I(t)dt with I(t) = I o sin /c' (t - a').

Taking advantage of the X-approximation, the mean electron

energy can be estimated by
co

fv(t) I(t)dt

C = 0.266 V1 (kV) + 0.626 V2 (kV) (W)
co

J I(t)dt

The correlation between (E) and (e) can be used as a further

check on the validity of the X-approximation. Figure 21 is a plot

of (E) versus (e), when (E) was calculated from the signals of the

voltage and current monitors withcut approximation. The rms de-

viation of this comparison is less than ±10%.

C. ELECTRON ENERGY DEPOSITION PROFILE AND SUMMARY OF BEAM
DIAGNOSTICS

1. Depth Dose and Electron Number Transmission Measurements

The method used to predict the deposition profile is diagramed

in Figure 22. The electron beam is fired into an array of 0.003-in.

aluminum foils with thermocouples attached (uepth dose),to record

the temperature rise. The data are translated into energy deposited

in each foil, and a normalization is obtained by dividing the cal/g
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deposited in each foil by the incident fluence. The fluence is

defined by the total calories stopped in the entire array divided
by the collimator area. The result is a measured depo,.tion pro-
file for aluminum in histogram form.

For the same shot, the time-dependent accelerating voltage,
V(t), and the diode monitor, I(t) (Reference 3), are divided into
small, equal, time increments, At, generating a set CV(ti), I(ti)1,
which becomes the input to an electron deposition code based on an
interpolation of Spence's data (Reference 2). The code considers
each pair, [V(ti), I(ti)], to be a monoenergetic source of energy
eV(ti) and the electron number At I(ti ) from which it calculates
the spectrum and the net deposition profile in aluminum. The de-
position profile obtained carries the normalization of unit fluence,
i.e., cal/g/cal/ct2 . The depth-dose histogram is then compared with
the deposition profile calculated from the accelerating voltage and
diode monitor traces. Figures 23 and 24 show the calculated de-
position profiles for mean electron energies of 283 and 216 keY,
respectively. Superimposed over these curves are the measured
depth dose histograms.

A consistent trend appears in the comparison of the deposition
profiles. The first foil always reads a value higher than, and the
second foil a value lower than that predicted from the diode diagnos-
tics. This behavior is consistent with non-paraxial electron tra-
jectories and appears to be characteristic of all high-current
beams. Clearly, a precise definition of electron trajectories is
required to resolve this question, and experiments to this end
have been conducted under DASA Contract No. DASA-01-68-C-0096.
Specifically, these measurements incorporated a Faraday cup
behind filters of various thicknesses, and the transmission data
were compared with Monte Carlo electron deposition calculations

(Figures 25 and 26).
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itts of these investigations indicate a good correlation

I<twten the measured mean incidence angles, (0), and thcse calcu-

lat od from the balance between electron transverse and magnetic

pressures (Reference 3), which predicts

tan 2  OT) 2 : 2

L34xl 3  0 '), +1 - 1
(1j-f T

2-= (il- )

Peak Not Current
m Peak Primary Current

c'T  = Transverse Velocity

ciL = Longitudinal Velocity

= c L2 + 8 2 - Total Velocity

Inet (kA) = Net current in amps (Rogowski coil output)

Data from a recent program funded by Sandia, Livermore (Reference 9),

illustrate the correlation between measured and calculated (0) at

the sample location:

(E) = 480 keV

= 0.6

Ine t = 15 kA
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I = 25 kApr

S2>
OT 2 ) 0.38

(0) = 310

The calculated angle is in good agreement with the data

shown in Figure 25.

2. Summary of Beam Diagnostics

The techniques of determining the electron fluence level

and normalized deposition profile as discussed in the preceding
section are summarized in Figure 27. A brief review follows:

The scaled dI/dt probe signal representing the inductive

pickup of the voltage monitor is subtracted from the voltage
monitor signal, yielding the accelerating voltage across the
anode-cathode space. This, in addition to diode current and

the mean angle of incidence, is used as the input to Monte Carlo
electron-deposition calculations yielding the mean electron
energy and a deposition profile normalized to unit fluence.
Using the signals from the voltage monitor and the Rogowski coil

(net beam current near the sample), the fluence during an actual
sample irradiation shot is determined and used to scale the nor-
mallzed deposition profile to yield the actual deposition profile

for that shot.

Sco ctcin a recent program (,eference ") has afforded

an excellent opportunity to test the validity of the 738 Pulserad
diagnostics in defining the electron-beam environment. Figure 28
shows the comparison between calculated and measured stress his-
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tories and Figure 29 gives a plot of peak stress (measured and

calculated) versus fluence in beryllium. The agreement between
the measurements and calculations indicates a good confidence

level in the diagnostics.

D. IMPULSE MEASUREMENT TECHNIQUES AND DATA SUMMARY

The ballistic pendulum used in this program is shown in
Figure 30. The pendulum axle supporting the rod and bob rotates
on two instrumentation bearings and is mechanically coupled to
a variable transformer to record the pendulum deflection. Ro-
tation of the pendulum axle changes the magnetic coupling be-
tween an externally powered primary and a secondary coil whose
output signal is then displayed on an oscilloscope. Figure 31
shows a typical output signal recording the pendulum deflection
as a function of time. The variable transformer response was
calibrated by pho:.ographing its output at successive pendulum
deflections in five-degree increments (Figure 32).

Figure 33 shows the cilibration curve obtained by plotting
pendulum deflection, 0, versus 'he output signal from the
variable transformer. Ths ':utput is linear for 00 :c g 200,
with increasing nor-linearity for 0 > 200, Although the
calibration curve permits meaningful operation in the t) > 200
region of maximum deflection, the normal operating procedure is
to increase the bob mass of the pendulum in advance of antici-

pated deflections of 0 '> 200. Low-impulse sensitivity is
obtained by decreasing the bob mass while increasing the
oscilloscope sensitivity.

The differential equation governing the motion of a damped
simple pendulum is of the form

S+ 2B;+ sin 0 = 0
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where the damping is proportional to the angular velocity, 0.

For angles up to 20 degrees (sin 0)/0 s 0.98. Thus, to a good

approximation

O + 260 + 9~0 = 0

It can be shown that 0(t) = Ae- ft sin wt with w = g/ - fl

satisfies the equation of motion.

A determination of the damping coefficient, , is made by

recording a number of free oscillations of the pendulum resulting

from electron-beam-generated impulse. Ccmparing peak deflections,

a number of oscillations, n, apart yields

0(t1 ) Ae sin Wt1  - (t I - t 2 ) 2rn6/w
=(2  _8t 2  =-e=e
Ae sin wt2

Thus, the damping coefficient

ln (tI 1 ln (t1 )
2-n 0(t 2) nT 0(t 2 )

where the period T and the ratio 0(t 1 )/O(t 2 ) are taken directly

from the output of the variable transformer. Damping coefficient

determinations are performed prior to every experimental run. A

typical value is a = 0.03 sec -1. The period, T, of the pendulum

is 0.95 sec for most bob masses used. The first peak deflection

from the beam-generated impulse occurs at t = 1/4T = 0.24 sec.

The damping factor, under these conditions, has the value
e t = 0.99 ; 1.0.
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Consequently, bearing drag associated with pendulum motion,

although small, can be accounted for in the impulse calculation.

Applying the initial condition AdO/dt = v at t = 0 to the

solution of the damped pendulum equation of motion yields

0~t)= M (W + 2/ w) e- t sin wtg

But since typically

2
82 = (0.03) 2(0.95) = 0.0014 <<«

0(t) =0V e-Ot sin wt - 71v sin (At
gT

The maximum deflection, 8max, occurs at t = 1/4 T where sin wt 1.

Solving the 0max equation for v and multiplying by the total moving

mass of the pendulum, the momentum imparced to the pendulum is

Mg T 0 e a(T/4)
(MV) =m2 2.72 MT 0max(deg) exp

The peak deflection, 8max , and the period of the pendulum, T, are

obtained directly from the oscilloscope trace of the output from

the variable transformer that monitors the pendulum motion

(Figure 31).

Consideration of the initial slope of the pendulum deflection

(Figure 31, lower trace) affords another calcule.tion of the impulse

impacted to the pendulum. If z is the pendulum center of mass,

then

A(MV) = Mk -_ M MAt
At W2 + a 2 r- 2 At

83



or 
A

A (MV) = Mg 0

Since the damping coefficient measurements cannot reflect

effects from static frictional forces at the start of the

pendulum swing, a calibration of the pendulum with a known

impulse was n'ccessary. A CO2 -cartridge-fed air pistol provided

the calibrating impulse. The pellet velocity was obtained from

the transit time between two photocells separated by a known

distance; the pellet mass was measured with an analytical balance.

The pellet was brought to rest in the pendulum bob by a layer of

absorbing material. The setup is shown in Figure 34 and the

calibration data are shown in Figure 35.

Because of the motion of the 738 Pulserad during an electron

beam pulse, it became necessary to mount the ballistic pendulum

and beam guide cone on a stable platfori. The experimental

setup is shoin in Figure 36.

Existing pendulum bobs accommodate disk-shaped samples of

1.30 in diam and thicknesses from 0.080 to 0.25 in. This,

however, is not a limitation, since bobs are easily fabricated

to suit the task. The samples are clamped between two retaining

rings and this essentially constitutes the front face of the

pendulum bob (Figure 37).

The accuracy of impulse measurements depends on two

quantities: the momentum imparted to the bob, A(MV) and the

crater area of the sample, A. The error in A(MV) is best

demonstrated in the calibration (Figure 35) in which the deviation
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from the calibrating momentum is less that ± 3%. This error bar

includes inaccuracies in the measurement of the total moving mass

and the error incurred in measuring the maximum amplitude and

period of oscillation from the oscilloscope photograph of the
variable transformer output. The error in the measurentent of

beam crater area can be minimized by photographing samples "head-

on" and measuring K from the pictures using a polar planimeter.

The deflection readout of the pendulum is unaffected by

electron-beam-generated noise since the bob remains stationary

during deposition time and begins to move long after all noise
has subsided. Variations in the deposition profile shape affect

the pendulum only through the magnitude of the total impulse they

generate. The pendulum deflection can be controlled by varying

the mass of the bob. Oscillations on the order of a tenth of a

degree are easily measured by increasing oscilloscope sensitivity

to the variable transformer signal. There is virtually no upper

limit to measurable impulse since bob mass can be increased to

the kilogram range.

A pendulum with a manganin gauge built into the bob is

currently under development. Damping characteristics like those

of the standard pendulum have been achieved. The remaining

difficulty is shielding the gauge from the RF environment in the

electron beam drift chamber without coupling the machine notion

to the pendulum. This problem is presently being addressed and

once solved will allow the measurement of total impulse and rear

surface stress simultaneously.

8
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The techniques described above have been used to generate

impulse data in aluminum. These data are summarized in
Table II. Since the data cover a range of mean energies, a

number of typical energy deposition profiles, normalized to
unit fluence, are shown in Figures 38 to 43.

The maximum front surface dose in these expeiiments was
1800 cal/g. This is shown in the following section to be

within the range of the spall-dominated impulse. In Section

IV, a model is presented for this regime, which is in good

agreement with the data. In addition, measurements and cal-
culated values of transmitted stress and ejected velocities

are presented.
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TABLE II

ALUMINUM IMPULSE DATA

(E) 4 2 A2  A (MV) I Am
(keV) (cal/cm) (cm) (KILO-DYNE-SEC) (ktap) (g)

i 22 "3
(208) 29 2.7 4.08 1.51 0.082

(222) (30) 3.2 5.93 1.85 0.109

220 31 3.0 5.45 1.83 0.119

(225) 35 3.2 5.55 1.72 0.131

(232) (37) 3.3 7.66 2.32 0.151

(233) 41 3.35 7.19 2.15 0.117

(260) 41 3.0 6.54 2.18 0.140

219 42 3.5 7.19 2.07 0.138

249 43 3.2 6.02 1.88 0.114

257 43 2.8 7.30 2.61 0.154

(223) 45 3.3 6.76 2.05 0.137

353 52 (-4.0) 13.17 -3.3 0.242

266 60 3.3 9.05 2.74 0.155

371 60 3.9 17.08 4.40 0.279

(386) 61 (-3.8) 13.63 -3.6 0.241

620 113 3.7 31.25 8.44 0.537

Notes to Tabular Data

Column 1. Parentheses indicate mean energy estimated by approxi-
mate integration scheme, others by numerical integration
of voltage and cuxrent traces.

Column 2. Parentheses indicate fluence estimated by approximate
integration of current trace.

Column 3. Parentheses indicate uncertain measurements of area due
to irregular crater edge.
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SECTION IV

EXPERIMENTS AND ANALYSTS ON
MELT-DOMINATED IMPULSE

A. INTRODUCTION

The two previous sections describe analytical and experi-

mental techniques used for studying impulse generation and the

impulse data that were collected for aluminum in the melt-

dominated or liquid splash-off regime.

In this section, a model for melt-dominated impulse is

developed that gives good agreement with the data collected here

as well as other data. When certain simplifying assumptions are

added to the model, the equations are linearized to second order

in deposited energy, and the deposition profile is represented

as a straight line, the model predicts impulse as being propor-

tional to fluence, multiplied by an exponential factor that con-

tains the deposition time. That is,

I = 0.04186 r exp (- 2 CkrtD)

where I is the impulse in ktap, r is the Gruneisen ratio, Ck is

the bulk sound speed in cm/psec (K/p ) , where K is the bulk

modulus, is the fluence in cal/cm , r is the electron range in

cm, and tD is the deposition time in psec. This simplified model

gives quite good agreement with magnesium, aluminum, and silver,

and fair agreement with lead, using no adjustable parameters and

handbook values for material properties.

In addition, an analysis is made of other experimental

techniques for measuring impulse. The techniques include the

use of quartz gauges for measuring stress histories, and flyer

plates used as momentum traps on the back of 0'e irradiated

sample. Preceding page blank
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B. A MODEL FOR MELT-DOMINATED IMPULS.

The first logical step in building a model for melt-

dominated impulse would be to define the region. A quantitative

estimate of the upper bound, must come from parameters of the

model itself. For now, however, the assumption will be made that

vapor effects are negligible, and an estimate of where vapor

effects are important will be made later on.

It would be desirable to use one of the analytical ex-

pressions, (Reference 17), such as the Whitener (1) or BBAY (2)

expressions

X

\2 [E i (m) - Ef(m)] dm (1)

O

0
1= 1.2 12 m [E~ ) - Efm]dml (2)

for calculating impulse. To do so requires an expression for

Ef(m), the final internal energy. To use the sublimation energy,

E, is clearly incorrect since this would imply that no impulse

is generated for deposited energy less than E s , and there is ex-

perimental evidence that impulse is generated.

Certainly the McCloskey-Thompson model (Reference 17) could

be used to calculate the final state energy. When this is done

for aluminum, however, the model does not fit the data. Ficgure

44 shows the impulse data in aluminum, and the impulse predicted

by the McCloskey-Thompson model, in the BBAY expression, where

Ef Em (1 + m
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for aluminum E 160 cal/g and Ed = the deposited energy. To

understand why this model is not appropriate, it will be useful

to picture the process going on in melt-dominated impulse genera-
tion.

Consider energy incident from the left, deposited in a

material instantaneously and for simplicity, with a linear depo-

sition profile. If the material had strength and were a linear

fluid, the initial stress would separate into halves, a right-

moving stress wave and one moving to the left. The left-moving

wave reflects from the front surface as a following, anti-symmetric

tension. The stress history at a point, then, shows the initial

compression (followed by an increase in compression if the point

is more than half the rarge from the front surface) and a sudden

drop into tension. If, on the other hand, the heated material

has no tensile strength, an increment of liquid will separate from

the body of "solid" at ea-.h time increment.

In effect, the vapor phase is ignored (the equilibrium vapor

pressure of the spalled liquid is assumed zero), and the solid-

liquid transition is also ignored--the material is treated as

though it is simply a strengthless solid. With this model, the

generated impulse can be calculated by finding the internal energy

changed to kinetic energy in adiabatic expansion, and this energy

substituted in the Whitener expression for impulse. (The Whitener

rather than the BBAY expression should be used as each increment of

mass is suddenly relieved to zero pressure; it is not pushing on

other mass.) To this end, the kinetic energy for a simplified

equation of state is derived below.

Assume an equation of state to be of the form

P = f(v) +
v
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where for definiteness the units of pressure, P, and internal

energy, E, are 1012 erg/ref cm3 (Mbar), v is the relative volume

(V/V ref), and I is the Gruneisen ratio (assumed constant). To

find the path of adiabats, the condition (dE/dv) = -P is substi-

tuted, to give the differential equation

dP + F + 1 -D = -- " vd (v))

which has the solution

P = f(v) - r (r +1j f()d + C (1 r + 1

Specializing f to be the first term of a standard polynomial

equation of state for a solid

f M) = ;-; - 1)

where K is the bulk rodulus,

P =C (V) - P +

and C is determined by the initial condition

FEo0
P0  f (Vo) +

defining

(r 1 1) P0
C = K

r 1+ ( 1
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Thus the relative volume at which the adiabat is at zero pressure,

v* is

V* = v0 (U + )1/(r + 1)

The energy released in expanding to zero pressure, which i t'e

kinetic energy of motion, is given by

vW

E= f P () dF:
adia

v
0

Substituting

AE = K v0U + 0)/( + 1) + O) + V

v v
v0

AE= K (F + 1) + £ - (r + 1) ( + )/( +
r (1 + 1) +~ 1  ~ .~

This is the result sought, but more usefully in what follows, we

expand for small e (using a Taylor's series), and obtain

AE = o 2 Vo P O

2(r + 1)2 2K

This expression is compared to the McCloskey-Thompson expression

for the final energy in Figure 45 for the parameters of aluminum

assuming the energy is deposited at reference volume. It is clear

that the final energy is larger for the linear fluid; hence, the

impulse calculated will be less since less energy is available

for the kinetic energy of motion.
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The other interesting feature of the expression is the

dependence on thu volume at which enerqy is deposited, shown in

Figure 46, for the parameters of aluminLu and a dose of 0.1 Mbar

(" 900 cal/g). This shows qualitatively that if the deposition

time is not zero, so that loading near the front surface is at

relative volumes larger than one, the impulse will be reduced.

In contrast to this, the expression for kinetic energy of a

y-law gas, by a similar derivation, can be shown to be

AE = (E - ES )

where Es is the unavailable energy (required to overcome the

potential well of the lattice), independent of the volume at

which it is deposited. Thus we have the first indication of the

importance of deposition time in melt-dominated impulse.

With the approximations of

1. Linear deposition profile

2. Material removed to the end of the range, r(cm)

3. Fluence = (1/2 ,o POr) where 1 is the front surface

dose in (cal/g)

4. Linearized expression for AE

5. Whitener expression for impulse,

the impulse is given by

0.04186 2 CP

2*Ck

where I is the impulse in ktap, Ck is the bulk sound speed in
2cm/vsec (= %iK/P ), and t is the fluence in cal/cm2 . This is

0most easily derived by considering that the momentum density (u)

is given by

This assumes that brem~cstrahlung losses and electron back-
scattering losses are neglected.
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0)

where AE is the kinetic energy density (1012 erg/ref cm3), 11 is

in cm/sec, and integrating the velocity over the mass that is

included in the electron range.

The expression for impulse is, of course, only appropriate

for neg) libe deposition times, but is useful for predicting

-pper beuuds for melt-dominated impulse. Before considering the

effects of deposition time, there is additional information con-

tained in the expression for impulse and kinetic energy that

should be noted.

?irst the expression for impulse has only two material

sensitive parameters, r and Ck' and for metals, the ratio varies
by about a factor of 10 from Be '1.45) to Pb (13.3). Second, the

velocity given by u = T(2AE/p ) is just P/Po Ck' the particle

velocity that would be expected from the Hugoniot jump conditions

and the first order approximation that thE. velocity from a rare-

faction (the Riemann invariant) Ur, is just the particle velocity,

U p. Third, since neither r nor Ck are sensitive to small alloy

concentration, the diffurence in impulse between different alloys

is expected to be small.

Finally the linear fluid model is compared with the McCloskey-

lompson model and with the experimental data in aluminum (Figure

47)

The effect of deposition time has been considered by Bade, et

al., (Reference 18), in their calculation of non-blowoff impulse

IN* When their formulas are generalized to an arbitrary deposition

profile (Reference 19), the expre.sion for non-blowoff impalse is
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N t 2 f f ° x]
k DCI2 tk CktD/ 2  0

When this formula is specialized for a linear deposition profile,

and the approximation that the fluence, +, is given by

1

T=Cor po

is retained, the expression for impulse becomes

I 0.0418 -&_ f( )2C k

I - C + 1/3 E2, < 1
where

w eI 1/3 , 1

and 1 CktDand " =2 r

For

CktD 3.5 r, f() +e-  7%

as can be seen in Figure 48. Thus, to the accuracy of the approxi-

mations we may use

I = 0.0418 2 k b e -(CktD)/ 2 r , for CktD . 3.5 r

To compare the expression with electron-beam impulse data more

readily, Figure 2-13 of Reference 20 has been used to obtain the
2range of electrons in g/cm2 , 0 or, as a function of mean electron

energy <F> (MeV) suitable for energies near 0.25 MeV for all

materials.
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From this figure

cr = 1.2 <

Hence the deposition time dependence is given by

f(+krt )_c ( ck tDPO)
The dependence of impulse on the deposition time should be

strongly emphasized. For melt-dominated impulse, it becomes an

important parameter. If, for example, an attempt were made to

obtain an effective Ef by a least-squares fit to one of the

analytical expressions, as discussed in Reference 17, and the

deposition time was not considered, the results would not ex-

trapolate to other deposition profiles with the same deposition

time. Indeed: the final energy Ef could be a strong function of

deposition time.

Figures 49, 50, and 51, taken from data reported in References

21 and 22, show impulse versus fluence for four materials--Mg, Al,

Ag, Pb--without a-y scaling, scaled by the linearized impulse ex-

pression without regard to deposition time, and scaled by the

full formula, respectively. The material properties used are

standard PUFF equation-of-state parameters and are shown in

Table III. From these figures, when the approximate time de-

pendence and impulse formulas are used, there is quite reasonable

agreement, and the data tend to cluster about the theoretical line

that has no adjustable parameters.

Since the exoression and hence the model for melt-dominated

impulse has been verified, we may use the model to estimate the

limits of the melt-dominated region.
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TABLE III

PARAMETERS USED FOR SC? .ING IMPULSE DATA

Ck Po tD

11 (cm/usec) (g/cm) (lisec)

Al 2.13 0.536 2.70 0.03

rg 1.46 0.450 1.74 0.03

Ag 2.34 0.327 10.5 0.03

Pb 2.78 0.209 11.3 0.03
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We assume that the liquid and solid both have the same bulk

modulus, K; then, the intersection of the release adiabat with the

liquid-vapor dome will be at a pressure depending on the initial

internal energy. The release adiabat of the liquid that intersects

the liquid vapor dome at about 0.1 kbar, extended to zero pressure,

reaches a volume of approximately 1/2 vc, vc being the critical-

point volume (Reference 23). The 0.1 kbar level is chosen more or

less arbitrarily so that any impulse contribution from the vapor,

which should be complete by - 4 psec, is less than 0.2 ktap. With

the approximation that vc = 3v ref , we estimate the internal energy

required to reach this adiabat by using

v* = V (I + C)I (  + )
0

If the energy is deposited at reference volume, this gives

Eo (cal/g) = 4.186 p x( + i) (1. 5 1)

For aluminum, K = 0.75 Mbar, F = 2, po = 2.7 and this gives

E -1 2600 cal/g

as the approximate upper bound for the melt-dominated impulse

region.
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C. ANAILYSIIS OF OTHEF TJ-CHINIQUS USED FOR IMPULSE, MEASUREMENTS

At this point,a model for melt-dominated impulse has been

proposed, and a simplified formula foi the dominant features of

impulse generation has been derived. To check the model more

carefully, information about the propagated stress wave is re-

quirvd. This information was obtained experimentally by measuring

the stress history with quartz gauges. The analytical details of

stress propagation were obtained by programming the model for liquid

splashoff as part of the constitutive relation in a Lagrange hydro-

dynamic code, POD.

The solid-liquid phase transition was ignored. The justification

for this is twofold: (1) The results of McQueen, et a!. (Reference 24)

show that the liquid-solid transition in copper was virtually indis-

tinguishable on a shock speed-particle velocity plot, and (2) that

inclusion of the phase transition was unnecessary to ubtain good

agreement with stress and impulse data. The constitutive relation,

then, describes the liquid phase as having the same bulk properties

as the solid, but with yield stress, shear modulus, and tensile

strength that approach zero as the internal energy reaches the en-

thalpy required to rea-h the melting point at 1 atm. The relations

used are shown in Table IV and Figure 52. With these constitutive

relations, machine diagnostics were used, as described in Reference 2,

to obtain the energy spectrum, mean angle of incidence of the electron

stream, fluence, and effective deposition time. The deposition

profile was then calculated by a Monte Carlo electron transport code,
and this in-m.tion w..as used in a series of hydrodynamic c de

calculations.
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TABLE IV

CONSTITUTIVE RELATION FOR ALUMINUM

Pressure

P = 0.75v + 0.405p 2 + (2 + 2) E , 1 (Ref 26)

0.7511 + (2 + 2p) E , |i < I

Where pi p/p o-

Shear Modulus

G = 0.275 - 15.28E , E < 0.0181 (Ref 26)

0 E > 0.0181

Von Mises yield stress, Y 0 = f(E), f(E) is shown in Figure 52.

Spall strength Pmin (E) = -0.006 (1 - E/0.0181).
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The first series of calculations was made to obtain impulse

by recording the momentum of the spalled liquid. The results of

the calculations and the simplified model discussed in Section III

are shown with the impulse data in Figure 53. In addition to these

calculations, other calculations were made to verify the dependence

of impulse on various constitutive parameters. They showed that,

indeed, a 20% reduction in bulk modulus (programmed as a linear

decrease with energy) caused a 10% increase in impulse, and that

the effect of deposition time could be represented by exp (- C k tD/

2r).

The second series was run to obtain the predicted stress

histories in quartz. The deposition profile calculated for one of

these is shown in Figure 54. To obtain agreement with the measure-

ment, it was found necessary to include the epoxy bond between the

quartz and the aluminum in the calculations. When this was done,

the experimental and calculated stress histories were compared and

are shown in Figure 55. The good agreement lends considerable

credibility to the proposed model.

When the quartz gauge record is studied more carefully, it is

noted that the integral of stress over time is 1.3 ktap, which is

less than the calculated momentum in the spalled liquid, which was

1.6 ktap. The impedance mismatch of quartz and aluminum indicates

that if the stress-time momentum in alsrinum were 1.6 ktap, the

quartz would show at least 1.5 ktap. Thus, we have a small but

apparently real discrepancy in the calculation. To under-tand this

discrepancy, one must consider the details of elastic-plastic
behavior.
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If enough material at the front surface is removed, the normal

tensile tail caused by thermal stress production (Reference 27) is

completely surpressed, and the traveling stress pulse is only com-

pressive. '1he path in stress-volume space that is traversed by

elastic-plastic compression and release has hysteresis; that is,

there is a residual compression. This same hysteresis occurs in

stress-particle velocity space, so that the result of passing a

codpressive stress wave is to leave the material at a uniform

velocity. This velocity, for the parameters of aluminum used,

corresponds to 5 x 10- cm/Psec, whi.h is 0.135 ktap/mm. The

distance that the stress wave traveled to reach the quartz in the

above calculation was greater than 1 nin, which accounts for the

discrepancy. This phenomenon will occur with all materials that

have different loading and unloading paths. Further, if the plastic

part of the stress wave in the irradiated sample is transmitted as

a stress wave that stays within the elastic limit of quartz, the

residual velocity of the material will appear as a stress offset

in the quartz, an apparent baseline sift.

A second technique suggested for the measurement of impulse is

the use of flier plates attached to the rear of irradiated samples.

The velocity of these plates can be measured by recording their

trajectories with a high-speed movie camera, and measuring the mass

and center-of-mass velocity. To :elate this momentum to the ejecta

momentum, we will consider the one-dimensionlal stress-wave inter-

actions in some detail.

Assume that the flier and target have the same shock impedance,

and that the stress wave, however generated in the t&rget, is an

elastic finite pulse. The first important feature is that the simple

energy and momentum conservation relations used for rigid bodics do

not work. That is, in the lab frame,
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'! v'w

V 1 v
T F

indeed, for the same impedance targets,

v F  - -n ]

v F in

when the thickness of the pl,,te, F, is such tLat the entire stress

pulse can be contained in it.

This flier velocity is certainly a contradiction, and at first

thought, it appears to be nonconservation of kinetic energy. That is,2 mTVT2 .ety ~'
inF v F 2 " 2(mT/mF) . The kinetic energy that is apparently lost,

however, goes into the -inging of the elastic pulse, which becomes ap-

parent when it is remembered that for a nonuniform velocity distribution--

a pulse--the square of the average velocity is less than the average

of the squared velocity. That is. when the kinetic energy associated

with the momentum of a stress pulse is assumed smoothed into center-

of-mass translation, kinetic energy is lost.

When the flier has higher shock impedance than the target, and

the flier is thick enough to contain the pulse for elastic stresses,

2ZF (mTvT)
vF  = __F Z T + Z F  mF

where Z F and ZT are the respective shock impedances. If the impedance

of the flier is less than the sample

(vvT F +Z z

2 T 6 F
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how much less vF is than the upper bound depends on the shape of

the stress pulse.

if there is a hysteresis in the sample, then the flier, like

the quartz 9auge, will trap only part of the momentum. For "thick"

fliers, with shock impedances greater than or equal to the target

mv V ZT F (mrvT- Pour)

whe-e ur is the residual sample velocily. (For aluminum the sub-

tractive term is 0.13 ktap/mm.)

'hings are not nearly so simple, however, when the flier is

not thick enough to contain the stress pulse, due to, say, vapor

pu-hinL for long times. In this case, a calculation of the stress

waves .s requized to gEt even an approximate value for the momentum

fracti.-n trapped in the 'lier.

D. 2JECTA VELOCITIES

A further test of the spail-dominated model, and probably xwo.e

direct confirmation than even transmitted stress, would be agr,.-ement

with calculated and measured ejecta velocities.

Under a program carried out at. Physics International by D. Dean

of the Sandia Corporation, (Reference 9), a na.-nter of experiments on the

Pulserad 738 machine were performed using a high-speed framing camera to

record the motion of the front surface ejecta. Selected fraAes of

the front surface response of aluminum exposed to 40 cal/cm2 of 0.26

MeV electrons are shown in Fiqure 56. The posiLion leading and trail-

ing edges of persistent ,tructure in the Pjecta show velocities of

0.06 and 0.020 cm/j.sec. The calculated mean velocity for the deposi--

tion conditions was V .03 cm!psec. it is seen that good quantitative

agreement between calculae.J and measured velocities exists within

the uncertainty of khe experiment, thereby providing confirmation of

the melt--dominated model.
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SECTION V

CONCLUSIONS

Measurements of impulse generation using a ballistic pendulum,

transmitted stress histories using quartz gadges, and ejecta ve-'

locities using framing cameras have been successfully performed in

an electron-beam environment. These measurements, together with

analysis, have been used in an extensive program to study impulse

generation in aluminum in the melt-dominated regime.

The major result of the combined analytical and experimental-

program is the conclusion that the description of material removal

by liquid spall extends to rather large energy densities. In

aluminum, for example, it is anticipated that energy densities

nearly sufficient to cause complete vaporization at atmospheric

pressure can be successfully treated by ignoring the vapor phase.

This analysis was also seen to be a reasonable approximation for

other simple materials. Thus, we take it as a general conclusion

that the liquid-spal] model is appropriate up to energy densities

given approximately by

K x 1 0 5 5F + 1E (cal/g) 4.186 p0 F(F + 1) (1.5 - )

where K is the bulk modulus in Mbar, r is the Gruneisen ratio, and
0° is the initial denslty in g/cm3 . hen this formula is evaluated

for various materials, Mg, A!, Ag, and Pb, the maximum dose is

within 25% of the energy of vaporized metal at atmospheric pressure.

With recent improvements in achievable doses on the Pulserad

728, it is anticipated tha: an extension of the experimental results

presented here would be made to experimentally verify the upper

bound of the spall-dominated impulse region and to dutermine appro-

priate models in the mixed phase and vapor-dominated regions. A
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cubined andlyti cAl and experimental approach, such as used on this

protdiam and outilrnt.d in Figure 57, is recommLerded. in this way, the

re.sil0s ot t.xperimnents and analysis can affect each other during

the course of the program.

It is expected that such an approach will provide the funda-

mente1l basis of understanding required to model mixed-phase effects

and permit the extension to even more complex materials such as

fiber-reinforced composites.
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